The Triangular distribution
The Triangular distribution is called so because of its triangular shaped density function. The range of the distribution is a bounded interval of real numbers.

In the triangular distribution the key numbers, "a", "b" and "c" are interpreted as follows:

```
"a"
=
The 0%-fractile.
```

"b"
$=$

The mode of the density function (the value corresponding to the maximum of the density).
"c"
$=$

The 100\%-fractile.
To get a sensible distribution, the specified values must satisfy:

$$
" \mathrm{a} "<\mathrm{"b} "<" \mathrm{c} "
$$

DynRisk will reorder the numbers if they do not satisfy these requirements. No further adjustments are needed.

The probability, p , of having a value less than or equal to the " b " value is given by:

$$
\mathrm{p}=(" \mathrm{~b} "-\text { "a") / ("c" - "a"). }
$$

Note that if " b " is the arithmetical mean of "c" and " a ", it is also equal to the 50%-fractile of the distribution.

Assume e.g., that the following key numbers are specified:

$$
\begin{aligned}
& " \mathrm{a} "=0.5 \\
& " \mathrm{~b} \text { " }=1.0 \\
& " \mathrm{c} \text { " }=3.0
\end{aligned}
$$

In this case we get that:

$$
\mathrm{p}=(1.0-0.5) /(3.0-0.5)=0.2
$$

Thus, in this case " b " value is equal to the 20%-fractile of the distribution.

